Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform & More Latest News Here – Up Jobs

 

  • Rising, A. & Johansson, J. Toward spinning artificial spider silk. Nat. Chem. Biol. 11, 309–315 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Babb, P. L. et al. The Nephila clavipes genome highlights the diversity of spider silk genes and their complex expression. Nat. Genet. 49, 895–903 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hijirida, D. H. et al. 13C NMR of Nephila clavipes major ampullate silk gland. Biophysical J. 71, 3442–3447 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Andersson, M., Holm, L., Ridderstraìšle, Y., Johansson, J. & Rising, A. Morphology and composition of the spider major ampullate gland and dragline silk. Biomacromolecules 14, 2945–2952 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parent, L. R. et al. Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks. Proc. Natl Acad. Sci. USA. 115, 11507–11512 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jin, H. J. & Kaplan, D. L. Mechanism of silk processing in insects and spiders. Nature 424, 1057–1061 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jenkins, J. E. et al. Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction. Biomacromolecules 14, 3472–3483 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Holland, G. P., Creager, M. S., Jenkins, J. E., Lewis, R. V. & Yarger, J. L. Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 9871–9877 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hronska, M., van Beek, J. D., Williamson, P. T. F., Vollrath, F. & Meier, B. H. NMR characterization of native liquid spider dragline silk from Nephila edulis. Biomacromolecules 5, 834–839 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Holland, G. P., Jenkins, J. E., Creager, M. S., Lewis, R. V. & Yarger, J. L. Quantifying the fraction of glycine and alanine in β-sheet and helical conformations in spider dragline silk using solid-state NMR. Chem. Commun. 43, 5568–5570 (2008).

    Article 
    CAS 

    Google Scholar 

  • Simmons, A., Ray, E. & Jelinski, L. W. Solid-State 13C NMR of Nephila clavipes Dragline silk establishes structure and identity of crystalline regions. Macromolecules 27, 5235–5237 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Knight, D. P., Knight, M. M. & Vollrath, F. Beta transition and stress-induced phase separation in the spinning of spider dragline silk. Int. J. Biol. Macromolecules 27, 205–210 (2000).

    CAS 
    Article 

    Google Scholar 

  • Kenney, J. M., Knight, D., Wise, M. J. & Vollrath, F. Amyloidogenic nature of spider silk. Eur. J. Biochem. 269, 4159–4163 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Blackledge, T. A. & Hayashi, C. Y. Silken toolkits: Biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J. Exp. Biol. 209, 2452–2461 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Hayashi, C. Y., Shipley, N. H. & Lewis, R. V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromolecules 24, 271–275 (1999).

    CAS 
    Article 

    Google Scholar 

  • Andersson, M. et al. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLoS Biol. 12, e1001921 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hagn, F. et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239–242 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kronqvist, N. et al. Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation. Nat. Commun. 5, 3254 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Askarieh, G. et al. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465, 236–238 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rising, A., Hjälm, G., Engström, W. & Johansson, J. N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7, 3120–3124 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Challis, R. J., Goodacre, S. L. & Hewitt, G. M. Evolution of spider silks: Conservation and diversification of the C-terminus. Insect Mol. Biol. 15, 45–56 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Knight, D. P. & Vollrath, F. Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 88, 179–182 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Otikovs, M. et al. Degree of biomimicry of artificial spider silk spinning assessed by NMR spectroscopy. Angew. Chem. Int Ed. Engl. 56, 12571–12575 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Landreh, M. et al. Mass spectrometry captures structural intermediates in protein fiber self-assembly. Chem. Commun. 53, 3319–3322 (2017).

    CAS 
    Article 

    Google Scholar 

  • Andersson, M. et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 13, 262–264 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hagn, F., Thamm, C., Scheibel, T. & Kessler, H. PH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk – Implications for fiber formation. Angew. Chem. – Int. Ed. 50, 310–313 (2011).

    CAS 
    Article 

    Google Scholar 

  • Hedhammar, M. et al. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: Implications for fiber formation. Biochemistry 47, 3407–3417 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jaudzems, K. et al. PH-dependent dimerization of spider silk N-terminal domain requires relocation of a wedged tryptophan side chain. J. Mol. Biol. 422, 477–487 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Otikovs, M. et al. Diversified structural basis of a conserved molecular mechanism for pH-dependent dimerization in spider Silk N-terminal domains. Chembiochem 16, 1720–1724 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kronqvist, N. et al. Efficient protein production inspired by how spiders make silk. Nat. Commun. 8, 15504 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arndt, T., Laity, P. R., Johansson, J., Holland, C. & Rising, A. Native-like flow properties of an artificial spider silk dope. ACS Biomater. Sci. Eng. 7, 462–471 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gonska, N. et al. Structure-function relationship of artificial spider silk fibers produced by straining flow spinning. Biomacromolecules 21, 2116–2124 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Finnigan, W. et al. The effect of terminal globular domains on the response of recombinant mini-spidroins to fiber spinning triggers. Sci. Rep. 10, 10671 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schmuck, B. et al. High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials. Mater. Today 50, 1–8 (2021).

    Article 
    CAS 

    Google Scholar 

  • Greco, G. et al. Properties of biomimetic artificial spider silk fibers tuned by PostSpin bath incubation. Molecules 25, 3248 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Koeppel, A. & Holland, C. Progress and trends in artificial silk spinning: A systematic review. ACS Biomater. Sci. Eng. 3, 226–237 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Qian, Z. G., Zhou, M. L., Song, W. W. & Xia, X. X. Dual thermosensitive hydrogels assembled from the conserved C-terminal domain of spider dragline silk. Biomacromolecules 16, 3704–3711 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • DeSimone, E., Schacht, K. & Scheibel, T. Cations influence the cross-linking of hydrogels made of recombinant, polyanionic spider silk proteins. Mater. Lett. 183, 101–104 (2016).

    CAS 
    Article 

    Google Scholar 

  • Thamm, C., DeSimone, E. & Scheibel, T. Characterization of hydrogels made of a novel spider silk protein eMaSp1s and evaluation for 3D printing. Macromolecular Biosci. 17, 1700141 (2017).

  • Holland, C., Terry, A. E., Porter, D. & Vollrath, F. Comparing the rheology of native spider and silkworm spinning dope. Nat. Mater. 5, 870–874 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Laity, P. R. & Holland, C. The rheology behind stress-induced solidification in native silk feedstocks. Int. J. Molecular Sci. 17, 1812 (2016).

  • Jarrett, J. T. & Lansbury, P. T. Jr. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Harper, J. D. & Lansbury, P. T. Models of amyloid seeding in Alzheimer’s disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wetzel, R. Kinetics and thermodynamics of amyloid fibril assembly. Acc. Chem. Res. 39, 671–679 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kaldmäe, M. et al. High intracellular stability of the spidroin N-terminal domain in spite of abundant amyloidogenic segments revealed by in-cell hydrogen/deuterium exchange mass spectrometry. FEBS J. 287, 2823–2833 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Heiby, J. C., Goretzki, B., Johnson, C. M., Hellmich, U. A. & Neuweiler, H. Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk. Nat. Commun. 10, 4378 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Chen, G. et al. Full-Length Minor Ampullate Spidroin Gene Sequence. PLoS ONE 7, e52293 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chiti, F. & Dobson, C. M. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol. 5, 15–22 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Iannuzzi, C., Borriello, M., Portaccio, M., Irace, G. & Sirangelo, I. Insights into insulin fibril assembly at physiological and acidic ph and related amyloid intrinsic fluorescence. Int. J. Molecular Sci. 18, 2551 (2017).

  • Noormägi, A., Valmsen, K., Tõugu, V. & Palumaa, P. Insulin fibrillization at acidic and physiological pH values is controlled by different molecular mechanisms. Protein J. 34, 398–403 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Eakin, C. M., Berman, A. J. & Miranker, A. D. A native to amyloidogenic transition regulated by a backbone trigger. Nat. Struct. Mol. Biol. 13, 202–208 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lim, K. H. et al. Solid-state NMR studies reveal native-like β-sheet structures in transthyretin amyloid. Biochemistry 55, 5272–5278 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dhulesia, A. et al. Local cooperativity in an amyloidogenic state of human lysozyme observed at atomic resolution. J. Am. Chem. Soc. 132, 15580–15588 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Noji, M. et al. Breakdown of supersaturation barrier links protein folding to amyloid formation. Commun. Biol. 4, 1–10 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jean, L., Lee, C. F., Hodder, P., Hawkins, N. & Vaux, D. J. Dynamics of the formation of a hydrogel by a pathogenic amyloid peptide: Islet amyloid polypeptide. Sci. Rep. 6, 1–10 (2016).

    Article 
    CAS 

    Google Scholar 

  • Bhak, G., Lee, S., Park, J. W., Cho, S. & Paik, S. R. Amyloid hydrogel derived from curly protein fibrils of α-synuclein. Biomaterials 31, 5986–5995 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ray, S. et al. α-Synuclein aggregation nucleates through liquid–liquid phase separation. Nat. Chem. 12, 705–716 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ye, X., Lendel, C., Langton, M., Olsson, R. T. & Hedenqvist, M. S. Protein nanofibrils: Preparation, properties, and possible applications in industrial nanomaterials. Industrial Applications of Nanomaterials (Elsevier Inc., 2019). https://doi.org/10.1016/B978-0-12-815749-7.00002-5.

  • Ye, X. et al. Protein Nanofibrils and Their Hydrogel Formation with Metal Ions. ACS Nano. 15, 5341–5354 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Munialo, C. D., Martin, A. H., van der Linden, E. & de Jongh, H. H. J. Fibril formation from pea protein and subsequent gel formation. J. Agric. Food Chem. 62, 2418–2427 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Akkermans, C. et al. Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. J. Agric. Food Chem. 55, 9877–9882 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tang, C. H. & Wang, C. S. Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin. J. Agric. Food Chem. 58, 11058–11066 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rammensee, S., Huemmerich, D., Hermanson, K. D., Scheibel, T. & Bausch, A. R. Rheological characterization of hydrogels formed by recombinantly produced spider silk. Appl. Phys. A: Mater. Sci. Process. 82, 261–264 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • DeSimone, E., Schacht, K., Pellert, A. & Scheibel, T. Recombinant spider silk-based bioinks. Biofabrication 9, 44104 (2017).

    Article 
    CAS 

    Google Scholar 

  • Humenik, M., Preiß, T., Gödrich, S., Papastavrou, G. & Scheibel, T. Functionalized DNA-spider silk nanohydrogels for controlled protein binding and release. Materials Today Bio. 6, 100045 (2020).

  • Neubauer, V. J., Trossmann, V. T., Jacobi, S., Döbl, A. & Scheibel, T. Recombinant spider silk gels derived from aqueous–organic solvents as depots for drugs. Angew. Chem. – Int. Ed. 60, 11847–11851 (2021).

    CAS 
    Article 

    Google Scholar 

  • Schacht, K. et al. Biofabrication of cell-loaded 3D spider silk constructs. Angew. Chem. Int Ed. Engl. 54, 2816–2820 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schacht, K. & Scheibel, T. Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules 12, 2488–2495 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Song, W. W. et al. On-demand regulation of dual thermosensitive protein hydrogels. ACS Macro Lett. 10, 395–400 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gao, T. et al. Optimization of gelatin-alginate composite bioink printability using rheological parameters: A systematic approach. Biofabrication 10, 034106 (2018).

  • LeRoux, M. A., Guilak, F. & Setton, L. A. Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. J. Biomed. Mater. Res. 47, 46–53 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nayar, V. T., Weiland, J. D., Nelson, C. S. & Hodge, A. M. Elastic and viscoelastic characterization of agar. J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Valero, C., Amaveda, H., Mora, M. & García-Aznar, J. M. Combined experimental and computational characterization of crosslinked collagen-based hydrogels. PLoS ONE 13, 1–16 (2018).

    Article 
    CAS 

    Google Scholar 

  • Glassman, M. J. & Olsen, B. D. Arrested Phase Separation of Elastin-like Polypeptide Solutions Yields Stiff, Thermoresponsive Gels. Biomacromolecules 16, 3762–3773 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kamel, S., Thiele, I., Neubauer, P. & Wagner, A. Thermophilic nucleoside phosphorylases: Their properties, characteristics and applications. Biochimica et. Biophysica Acta – Proteins Proteom. 1868, 140304 (2020).

    CAS 
    Article 

    Google Scholar 

  • Takegoshi, K., Nakamura, S. & Terao, T. 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bennett, A. E., Griffin, R. G., Ok, J. H. & Vega, S. Chemical shift correlation spectroscopy in rotating solids: Radio frequency‐driven dipolar recoupling and longitudinal exchange. J. Chem. Phys. 96, 8624–8627 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fung, B. M., Khitrin, A. K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goldschmidt, L., Teng, P. K., Riek, R. & Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl Acad. Sci. USA. 107, 3487–3492 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kuhlman, B. & Baker, D. Native protein sequences are close to optimal for their structures. Proc. Natl Acad. Sci. USA. 97, 10383–10388 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Maurer-Stroh, S. et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods 7, 237–242 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kricheldor, H. R. & Müller, D. Secondary structure of peptides. 3. 13C NMR cross polarization/magic angle spinning spectroscopic characterization of solid polypeptides. Macromolecules 16, 615–623 (1983).

    ADS 
    Article 

    Google Scholar 

  • Wang, Y. Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci. 11, 852–861 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform & Latest News Update

    I have tried to give all kinds of news to all of you latest news today 2022 through this website and you are going to like all this news very much because all the news we always give in this news is always there. It is on trending topic and whatever the latest news was

    it was always our effort to reach you that you keep getting the Electricity News, Degree News, Donate News, Bitcoin News, Trading News, Real Estate News, Gaming News, Trending News, Digital Marketing, Telecom News, Beauty News, Banking News, Travel News, Health News, Cryptocurrency News, Claim News latest news and you always keep getting the information of news through us for free and also tell you people. Give that whatever information related to other types of news will be

    Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform & More Live News

    All this news that I have made and shared for you people, you will like it very much and in it we keep bringing topics for you people like every time so that you keep getting news information like trending topics and you It is our goal to be able to get

    all kinds of news without going through us so that we can reach you the latest and best news for free so that you can move ahead further by getting the information of that news together with you. Later on, we will continue

    to give information about more today world news update types of latest news through posts on our website so that you always keep moving forward in that news and whatever kind of information will be there, it will definitely be conveyed to you people.

    Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform & More News Today

    All this news that I have brought up to you or will be the most different and best news that you people are not going to get anywhere, along with the information Trending News, Breaking News, Health News, Science News, Sports News, Entertainment News, Technology News, Business News, World News of this made available to all of you so that you are always connected with the news, stay ahead in the matter and keep getting today news all types of news for free till today so that you can get the news by getting it. Always take two steps forward

    Credit Goes To News Website – This Original Content Owner News Website . This Is Not My Content So If You Want To Read Original Content You Can Follow Below Links

    Get Original Links Here????

    Tinggalkan Balasan

    Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *