Remdesivir activates urotensin II receptor and induces cardiomyocyte dysfunction & More Latest News Here – Up Jobs

 

In a recent study posted to the bioRxiv* preprint server, researchers assessed the cardiac effects of remdesivir.

Study: Activation of the urotensin-II receptor by anti-COVID-19 drug remdesivir induces cardiomyocyte dysfunction. Image Credit: felipe caparros/Shutterstock

Background

Nucleoside analogs have been long used for designing antiviral drugs. Nucleoside analogs inhibit viral RNA-dependent RNA polymerase (RdRp). Several analogs, such as remdesivir, favipiravir, and molnupiravir, have been approved to treat coronavirus disease 2019 (COVID-19).

Remdesivir, a modified adenosine analog, is rapidly converted to a mono-nucleoside form upon intravenous administration. Subsequently, it is metabolized by host enzymes to the active triphosphate state. The active drug is a selective and potent inhibitor of RdRp of many viruses. Initially used for treating the Ebola virus, remdesivir was approved for COVID-19 amid the pandemic.

Although well tolerated by most patients, commonly reported adverse events include a rash, nausea, headache, and elevated transaminases. Moreover, cardiovascular events such as bradycardia, hypertension, T-wave abnormality, and QT prolongation have been reported.

Remdesivir distributes to multiple tissues, including the heart; however, the mechanisms underlying the cardiovascular complications remain unknown.

Molnupiravir and favipiravir have been used for COVID-19 treatment. Although different adverse events have been reported, no cardiovascular event has been reported with the use of favipiravir or molnupiravir. Nucleosides or nucleotides also act as ligands for G-protein-coupled receptors (GPCRs). As nucleoside analogs mimic structures, it is hypothesized that they could activate GPCRs and cause side effects.

The study and findings

In the present study, researchers carried out a large-scale GPCR screening using the three anti-COVID-19 drugs. The nucleoside analogs were screened against 348 GPCRs in a transforming growth factor (TGF)-α shedding assay. Initially, screening was performed using Gα subunits for efficient detection of receptor activation. The authors noted that remdesivir selectively activated the urotensin II receptor (UTS2R).

Concentration-response analysis showed a half-maximal effective concentration (pEC50) of 4.89 for remdesivir, albeit lower than that of urotensin II, the endogenous ligand of UTS2R. Intriguingly, remdesivir did not induce a β-arrestin recruitment response, unlike urotensin II, and thus was a G-protein-biased ligand. The major and minor metabolites of remdesivir, GS-441524, and GS-704277, did not affect the activation of UTS2R.

Further investigation revealed that receptor activation required both the nucleoside base and the McGuigan prodrug moiety of remdesivir. In silico structural docking of UTS2R and remdesivir identified multiple residues in the orthosteric pocket, potentially stabilizing binding to remdesivir. Three residues of UTS2R (T304, N297, and M134) were found to interact with remdesivir. Substituting these residues with others abolished the activation potency of remdesivir.

Next, HEK293 cells expressing UTS2R were stimulated with remdesivir, and the phosphorylation of extracellular signal regulation kinase (ERK) 1/2 was examined. Remdesivir treatment induced long-lasting phosphorylation of ERK1/2 in a dose-dependent manner. Remdesivir-mediated phosphorylation was abolished in the presence of a UTS2R antagonist.

The impact of remdesivir on cardiomyocytes was assessed given the high expression of UTS2R and urotensin II in cardiovascular systems. The drug’s effect was analyzed on the field potential (FP) using human-induced pluripotent stem (iPS) cell-derived cardiomyocytes, in which UTS2R levels are comparable to that of the heart.

A multielectrode assay showed that remdesivir-treated cells showed prolonged FP duration that was significantly suppressed in the presence of a UTS2R antagonist. The effects of the drug on cardiac contractility were assessed on neonatal rat cardiomyocytes (NRCMs). Chronic remdesivir application on NRCMs resulted in reduced contractility attenuated by UTS2R antagonist.

The team constructed 110 missense mutants corresponding to human single nucleotide variants (SNVs) in the UTS2R gene. Of these, 44 SNVs exhibited lower sensitivity to remdesivir relative to the wildtype receptor. In contrast, 47 SNVs had reduced sensitivity to urotensin II.

Notably, four missense SNVs increased sensitivity to remdesivir relative to wildtype. Of these, two SNVs had lower sensitivity to urotensin II, while the other two had a moderate/insignificant increase in sensitivity to urotensin II. Individuals with these mutations might be more susceptible to remdesivir/UTS2R-mediated cardiotoxicity.

Conclusions

The authors discovered that remdesivir selectively activated UTS2R. UTS2R activation by urotensin II has been implicated in cardiac dysfunction. As such, UTS2R activation by remdesivir in cultured cardiomyocytes induced electrical abnormalities and impaired contractility, resembling the reported cardiac events in humans. Notably, the adverse effects were negated by antagonizing UTS2R or blocking the downstream signaling.

The findings suggested that the clinical dose of remdesivir was adequate to trigger UTS2R activation. Notwithstanding the finding that UTS2R is activated by remdesivir leading to cardiotoxicity, a limitation of the study is the lack of clinical evidence.

In summary, the study provided mechanistic insights into remdesivir-mediated cardiac effects and discovered that it acts as a selective UTS2R agonist.

*Important notice

bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Remdesivir activates urotensin II receptor and induces cardiomyocyte dysfunction & Latest News Update

I have tried to give all kinds of news to all of you latest news today 2022 through this website and you are going to like all this news very much because all the news we always give in this news is always there. It is on trending topic and whatever the latest news was

it was always our effort to reach you that you keep getting the Electricity News, Degree News, Donate News, Bitcoin News, Trading News, Real Estate News, Gaming News, Trending News, Digital Marketing, Telecom News, Beauty News, Banking News, Travel News, Health News, Cryptocurrency News, Claim News latest news and you always keep getting the information of news through us for free and also tell you people. Give that whatever information related to other types of news will be

Remdesivir activates urotensin II receptor and induces cardiomyocyte dysfunction & More Live News

All this news that I have made and shared for you people, you will like it very much and in it we keep bringing topics for you people like every time so that you keep getting news information like trending topics and you It is our goal to be able to get

all kinds of news without going through us so that we can reach you the latest and best news for free so that you can move ahead further by getting the information of that news together with you. Later on, we will continue

to give information about more today world news update types of latest news through posts on our website so that you always keep moving forward in that news and whatever kind of information will be there, it will definitely be conveyed to you people.

Remdesivir activates urotensin II receptor and induces cardiomyocyte dysfunction & More News Today

All this news that I have brought up to you or will be the most different and best news that you people are not going to get anywhere, along with the information Trending News, Breaking News, Health News, Science News, Sports News, Entertainment News, Technology News, Business News, World News of this made available to all of you so that you are always connected with the news, stay ahead in the matter and keep getting today news all types of news for free till today so that you can get the news by getting it. Always take two steps forward

Credit Goes To News Website – This Original Content Owner News Website . This Is Not My Content So If You Want To Read Original Content You Can Follow Below Links

Get Original Links Here????

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *