Xu, X. & Wang, D. Comparative chloroplast genomics of Corydalis Species (Papaveraceae): Evolutionary perspectives on their unusual large scale rearrangements. Front. Plant Sci. 11, 2243 (2021).
Google Scholar
Ren, F. et al. Highly variable chloroplast genome from two endangered Papaveraceae lithophytes Corydalis tomentella and Corydalis saxicola. Ecol. Evol. 11, 4158–4171 (2021).
PubMed
PubMed Central
Article
Google Scholar
Yu, Z., Zhou, T., Li, N. & Wang, D. The complete chloroplast genome and phylogenetic analysis of Corydalis fangshanensis W.T. Wang ex S.Y. He (Papaveraceae). Mitochondrial DNA B 6, 3171–3173. https://doi.org/10.1080/23802359.2021.1987172 (2021).
Article
Google Scholar
Kanwal, N. et al. Complete chloroplast genome of a Chinese endemic species Corydalis trisecta Franch (Papaveraceae). Mitochondrial DNA B 4, 2291–2292. https://doi.org/10.1080/23802359.2019.1627930 (2019).
Article
Google Scholar
Medicine, E. B. O. C. T. Chinese Tibetan Medicine (Shanghai Science and Technology Press, 1996).
Google Scholar
Kubo, M., Matsuda, H., ToKUoKA, K., Ma, S. & Shiomoto, H. Anti-inflammatory activities of methanolic extract and alkaloidal components from Corydalis tuber. Biol. Pharm. Bull. 17, 262–265 (1994).
CAS
PubMed
Article
Google Scholar
Guo, Y. et al. The traditional uses, phytochemistry, pharmacokinetics, pharmacology, toxicity, and applications of Corydalis saxicola bunting: A review. Front. Pharmacol. 13, 822792. https://doi.org/10.3389/fphar.2022.822792 (2022).
CAS
Article
PubMed
PubMed Central
Google Scholar
Lidén, M., Fukuhara, T. & Axberg, T. Systematics and Evolution of the Ranunculiflorae 183–188 (Springer, 1995).
Book
Google Scholar
Bruneau, A., Starr, J. R. & Joly, S. Phylogenetic relationships in the genus Rosa: New evidence from chloroplast DNA sequences and an appraisal of current knowledge. Syst. Bot. 32, 366–378 (2007).
Article
Google Scholar
Yin, X. et al. The chloroplasts genomic analyses of Rosa laevigata, R. rugosa and R. canina. Chin. Med. 15, 1–11 (2020).
Article
CAS
Google Scholar
Ning, C. et al. Complete chloroplast genome of Salvia plebeia: Organization, specific barcode and phylogenetic analysis. Chin. J. Nat. Med. 18, 563–572 (2020).
Google Scholar
Zhang, Z. L., Zhang, Y., Song, M. F., Guan, Y. H. & Ma, X. J. Species identification of dracaena using the complete chloroplast genome as a super-barcode. Front. Pharmacol. 11, 1441 (2020).
Google Scholar
Wu, L. et al. Plant super-barcode: A case study on genome-based identification for closely related species of Fritillaria. Chin. Med. 16, 52. https://doi.org/10.1186/s13020-021-00460-z (2021).
CAS
Article
PubMed
PubMed Central
Google Scholar
Doyle, J. J., Davis, J. I., Soreng, R. J., Garvin, D. & Anderson, M. J. Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc. Natl. Acad. Sci. 89, 7722–7726 (1992).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Doyle, J. J., Doyle, J. L., Ballenger, J. & Palmer, J. The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae. Mol. Phylogenet. Evol. 5, 429–438 (1996).
CAS
PubMed
Article
Google Scholar
Cosner, M. E., Raubeson, L. A. & Jansen, R. K. Chloroplast DNA rearrangements in Campanulaceae: Phylogenetic utility of highly rearranged genomes. Bmc Evol. Biol. 4, 1–27 (2004).
Article
CAS
Google Scholar
Knox, E., Downie, S. & Palmer, J. Chloroplast genome rearrangements and the evolution of giant lobelias from herbaceous ancestors. Mol. Biol. Evol. 10, 414–430 (1993).
CAS
Google Scholar
Zhang, N., Zeng, L. P., Shan, H. Y. & Ma, H. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytol. 195, 923–937 (2012).
CAS
PubMed
Article
Google Scholar
Hong, C. P. et al. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae. BMC Genomics 18, 1–13 (2017).
CAS
Article
Google Scholar
Rousseau-Gueutin, M. et al. Potential functional replacement of the plastidic acetyl-CoA carboxylase subunit (accD) gene by recent transfers to the nucleus in some angiosperm lineages. Plant Physiol. 161, 1918–1929 (2013).
CAS
PubMed
PubMed Central
Article
Google Scholar
Li, J. Flora of China. Harv. Pap. Bot. 13, 301–302 (2007).
Article
Google Scholar
Lin, C.-S. et al. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family. Sci. Rep. 5, 1–10 (2015).
Google Scholar
Mower, J. P. & Vickrey, T. L. Structural diversity among plastid genomes of land plants. Adv. Bot. Res. 85, 263–292 (2018).
CAS
Article
Google Scholar
Palmer, J. D. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19, 325–354 (1985).
CAS
PubMed
Article
Google Scholar
Wicke, S., Schneeweiss, G. M., Depamphilis, C. W., Müller, K. F. & Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 76, 273–297 (2011).
CAS
PubMed
PubMed Central
Article
Google Scholar
Uribe-Convers, S., Carlsen, M. M., Lagomarsino, L. P. & Muchhala, N. Phylogenetic relationships of Burmeistera (Campanulaceae: Lobelioideae): Combining whole plastome with targeted loci data in a recent radiation. Mol. Phylogenet. Evol. 107, 551–563 (2017).
PubMed
Article
Google Scholar
Knox, E. B. The dynamic history of plastid genomes in the Campanulaceae sensu lato is unique among angiosperms. Proc. Natl. Acad. Sci. 111, 11097–11102 (2014).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Knox, E. B. & Li, C. The East Asian origin of the giant lobelias. Am. J. Bot. 104, 924–938 (2017).
CAS
PubMed
Article
Google Scholar
Choi, K. S. et al. Two Korean endemic Clematis chloroplast genomes: Inversion, reposition, expansion of the inverted repeat region, phylogenetic analysis, and nucleotide substitution rates. Plants 10, 397 (2021).
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu, H. et al. Comparative analysis of complete chloroplast genomes of Anemoclema, Anemone, Pulsatilla, and Hepatica revealing structural variations among genera in tribe Anemoneae (Ranunculaceae). Front. Plant Sci. 9, 1097 (2018).
PubMed
PubMed Central
Article
Google Scholar
Palmer, J. D., Nugent, J. M. & Herbon, L. A. Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc. Natl. Acad. Sci. 84, 769–773 (1987).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Chumley, T. W. et al. The complete chloroplast genome sequence of Pelargonium × hortorum: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol. Biol. Evol. 23, 2175–2190 (2006).
CAS
PubMed
Article
Google Scholar
Guisinger, M. M., Kuehl, J. V., Boore, J. L. & Jansen, R. K. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: Rearrangements, repeats, and codon usage. Mol. Biol. Evol. 28, 583–600 (2011).
CAS
PubMed
Article
Google Scholar
Weng, M.-L., Blazier, J. C., Govindu, M. & Jansen, R. K. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol. Biol. Evol. 31, 645–659 (2014).
CAS
PubMed
Article
Google Scholar
Röschenbleck, J., Wicke, S., Weinl, S., Kudla, J. & Müller, K. F. Genus-wide screening reveals four distinct types of structural plastid genome organization in Pelargonium (Geraniaceae). Genome Biol. Evol. 9, 64–76 (2017).
PubMed
Google Scholar
Weng, M. L., Ruhlman, T. A. & Jansen, R. K. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes. New Phytol. 214, 842–851 (2017).
CAS
PubMed
Article
Google Scholar
Kolodner, R. & Tewari, K. Inverted repeats in chloroplast DNA from higher plants. Proc. Natl. Acad. Sci. 76, 41–45 (1979).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Palmer, J. D. & Thompson, W. F. Rearrangements in the chloroplast genomes of mung bean and pea. Proc. Natl. Acad. Sci. 78, 5533–5537 (1981).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Lavin, M., Doyle, J. J. & Palmer, J. D. Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44, 390–402 (1990).
CAS
PubMed
Google Scholar
Cai, Z. et al. Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. J. Mol. Evol. 67, 696–704 (2008).
ADS
CAS
PubMed
Article
Google Scholar
Martin, G. E. et al. The first complete chloroplast genome of the Genistein legume Lupinus luteus: Evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Ann. Bot. 113, 1197–1210 (2014).
CAS
PubMed
PubMed Central
Article
Google Scholar
Schwarz, E. N. et al. Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids. J. Syst. Evol. 53, 458–468 (2015).
Article
Google Scholar
Wang, Y.-H., Qu, X.-J., Chen, S.-Y., Li, D.-Z. & Yi, T.-S. Plastomes of Mimosoideae: structural and size variation, sequence divergence, and phylogenetic implication. Tree Genet. Genomes 13, 41 (2017).
Article
Google Scholar
Charboneau, J. L., Cronn, R. C., Liston, A., Wojciechowski, M. F. & Sanderson, M. J. Plastome structural evolution and homoplastic inversions in Neo-Astragalus (Fabaceae). Genome Biol. Evol. 13, 215 (2021).
Article
CAS
Google Scholar
Lee, H.-L., Jansen, R. K., Chumley, T. W. & Kim, K.-J. Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol. Biol. Evol. 24, 1161–1180 (2007).
CAS
PubMed
Article
Google Scholar
Jansen, R. K. & Palmer, J. D. A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. 84, 5818–5822 (1987).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Kim, K.-J., Choi, K.-S. & Jansen, R. K. Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Mol. Biol. Evol. 22, 1783–1792 (2005).
CAS
PubMed
Article
Google Scholar
Sablok, G., Amiryousefi, A., He, X., Hyvönen, J. & Poczai, P. Sequencing the plastid genome of giant ragweed (Ambrosia trifida, Asteraceae) from a herbarium specimen. Front. Plant Sci. 10, 218 (2019).
PubMed
PubMed Central
Article
Google Scholar
Mehmood, F., Rahim, A., Heidari, P., Ahmed, I. & Poczai, P. Comparative plastome analysis of Blumea, with implications for genome evolution and phylogeny of Asteroideae. Ecol. Evol. 11, 7810–7826 (2021).
PubMed
PubMed Central
Article
Google Scholar
Zhu, A., Guo, W., Gupta, S., Fan, W. & Mower, J. P. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol. 209, 1747–1756 (2016).
CAS
PubMed
Article
Google Scholar
Kwon, W., Kim, Y., Park, C.-H. & Park, J. The complete chloroplast genome sequence of traditional medical herb, Plantago depressa Willd. (Plantaginaceae). Mitochondrial DNA B 4, 437–438 (2019).
Article
Google Scholar
Asaf, S. et al. Expanded inverted repeat region with large scale inversion in the first complete plastid genome sequence of Plantago ovata. Sci. Rep. 10, 1–16 (2020).
Article
CAS
Google Scholar
Wei, N. et al. Plastome evolution in the hyperdiverse Genus Euphorbia (Euphorbiaceae) using phylogenomic and comparative analyses: Large-scale expansion and contraction of the inverted repeat region. Front. Plant Sci. 12, 1555 (2021).
Google Scholar
Palmer, J. D. & Thompson, W. F. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29, 537–550 (1982).
CAS
PubMed
Article
Google Scholar
Michelangeli, F. A., Davis, J. I. & Stevenson, D. W. Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. Am. J. Bot. 90, 93–106 (2003).
CAS
PubMed
Article
Google Scholar
Burke, S. V., Lin, C.-S., Wysocki, W. P., Clark, L. G. & Duvall, M. R. Phylogenomics and plastome evolution of tropical forest grasses (Leptaspis, Streptochaeta: Poaceae). Front. Plant Sci. 7, 1993 (2016).
PubMed
PubMed Central
Article
Google Scholar
Liu, Q. et al. Comparative chloroplast genome analyses of Avena: Insights into evolutionary dynamics and phylogeny. BMC Plant Biol. 20, 1–20 (2020).
Article
CAS
Google Scholar
Ogihara, Y., Terachi, T. & Sasakuma, T. Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc. Natl. Acad. Sci. 85, 8573–8577 (1988).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Milligan, B. G., Hampton, J. N. & Palmer, J. D. Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol. Biol. Evol. 6, 355–368 (1989).
CAS
PubMed
Google Scholar
Li, J. et al. Assembly of the complete mitochondrial genome of an endemic plant, Scutellaria tsinyunensis, revealed the existence of two conformations generated by a repeat-mediated recombination. Planta 254, 1–16 (2021).
PubMed
Article
CAS
Google Scholar
Le Hir, H., Nott, A. & Moore, M. J. How introns influence and enhance eukaryotic gene expression. Trends Biochem. Sci. 28, 215–220 (2003).
PubMed
Article
CAS
Google Scholar
Niu, D.-K. & Yang, Y.-F. Why eukaryotic cells use introns to enhance gene expression: Splicing reduces transcription-associated mutagenesis by inhibiting topoisomerase I cutting activity. Biol. Direct 6, 1–10 (2011).
Article
CAS
Google Scholar
Callis, J., Fromm, M. & Walbot, V. Introns increase gene expression in cultured maize cells. Genes Dev. 1, 1183–1200 (1987).
CAS
PubMed
Article
Google Scholar
Emami, S., Arumainayagam, D., Korf, I. & Rose, A. B. The effects of a stimulating intron on the expression of heterologous genes in A rabidopsis thaliana. Plant Biotechnol. J. 11, 555–563 (2013).
CAS
PubMed
Article
Google Scholar
Choi, T., Huang, M., Gorman, C. & Jaenisch, R. A generic intron increases gene expression in transgenic mice. Mol. Cell. Biol. 11, 3070–3074 (1991).
CAS
PubMed
PubMed Central
Google Scholar
Haberle, R. C., Fourcade, H. M., Boore, J. L. & Jansen, R. K. Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J. Mol. Evol. 66, 350–361 (2008).
ADS
CAS
PubMed
Article
Google Scholar
Yue, F., Cui, L., Claude, W. D., Moret, B. M. & Tang, J. Gene rearrangement analysis and ancestral order inference from chloroplast genomes with inverted repeat. BMC Genomics 9, 1–9 (2008).
Article
CAS
Google Scholar
Ren, F. M. et al. DNA barcoding of Corydalis, the most taxonomically complicated genus of Papaveraceae. Ecol. Evol. 9, 1934–1945 (2019).
PubMed
PubMed Central
Article
Google Scholar
Sang, T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit. Rev. Biochem. Mol. Biol. 37, 121–147 (2002).
CAS
PubMed
Article
Google Scholar
Debray, K. et al. Identification and assessment of variable single-copy orthologous (SCO) nuclear loci for low-level phylogenomics: A case study in the genus Rosa (Rosaceae). BMC Evol. Biol. 19, 1–19 (2019).
CAS
Article
Google Scholar
Wang, Y. W. Systematics of Corydalis DC. (Fumariaceae) (The Chinese Academy of Sciences, 2006).
Google Scholar
Jiang, H., Lei, R., Ding, S.-W. & Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 1–12 (2014).
CAS
Google Scholar
Jin, J.-J. et al. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1–31 (2020).
Article
CAS
Google Scholar
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 (2013).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
PubMed
PubMed Central
Article
CAS
Google Scholar
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
CAS
PubMed
PubMed Central
Article
Google Scholar
Delcher, A. L., Salzberg, S. L. & Phillippy, A. M. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinform. 1, 10.13.11-10.13.18 (2003).
Google Scholar
Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).
CAS
PubMed
Article
Google Scholar
Huang, D. I. & Cronk, Q. C. Plann: A command-line application for annotating plastome sequences. Appl. Plant Sci. 3, 1500026 (2015).
Article
Google Scholar
Misra, S. & Harris, N. Using Apollo to browse and edit genome annotations. Curr. Protoc. Bioinform. 12, 1–28 (2005).
Article
Google Scholar
Lohse, M., Drechsel, O. & Bock, R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52, 267–274 (2007).
CAS
PubMed
Article
Google Scholar
Darling, A. C., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004).
CAS
PubMed
PubMed Central
Article
Google Scholar
Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).
CAS
PubMed
PubMed Central
Article
Google Scholar
Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).
CAS
PubMed
PubMed Central
Article
Google Scholar
Kurtz, S. et al. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633–4642 (2001).
MathSciNet
CAS
PubMed
PubMed Central
Article
Google Scholar
Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 33, 2583–2585 (2017).
CAS
PubMed
PubMed Central
Article
Google Scholar
Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).
Article
Google Scholar
Abascal, F., Zardoya, R. & Posada, D. ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105 (2005).
CAS
PubMed
Article
Google Scholar
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
CAS
PubMed
PubMed Central
Article
Google Scholar
Phylogenetic analysis based on single-copy orthologous proteins in highly variable chloroplast genomes of Corydalis & Latest News Update
Phylogenetic analysis based on single-copy orthologous proteins in highly variable chloroplast genomes of Corydalis & More Live News
All this news that I have made and shared for you people, you will like it very much and in it we keep bringing topics for you people like every time so that you keep getting news information like trending topics and you It is our goal to be able to get
all kinds of news without going through us so that we can reach you the latest and best news for free so that you can move ahead further by getting the information of that news together with you. Later on, we will continue
to give information about more today world news update types of latest news through posts on our website so that you always keep moving forward in that news and whatever kind of information will be there, it will definitely be conveyed to you people.
Phylogenetic analysis based on single-copy orthologous proteins in highly variable chloroplast genomes of Corydalis & More News Today
All this news that I have brought up to you or will be the most different and best news that you people are not going to get anywhere, along with the information Trending News, Breaking News, Health News, Science News, Sports News, Entertainment News, Technology News, Business News, World News of this made available to all of you so that you are always connected with the news, stay ahead in the matter and keep getting today news all types of news for free till today so that you can get the news by getting it. Always take two steps forward
Credit Goes To News Website – This Original Content Owner News Website . This Is Not My Content So If You Want To Read Original Content You Can Follow Below Links