A Lawrence Livermore National Laboratory (LLNL) team claimed a top prize at an inaugural international symbolic regression competition for an artificial intelligence (AI) framework they developed capable of explaining and interpreting real-life COVID-19 data.
Hosted by the open source SRBench project at the 2022 Genetic and Evolutionary Computation Conference (GECCO), the competition had two tracks — synthetic and real-world — and invited teams to submit their best symbolic regression algorithms. Organizers trained the models on datasets, assigned “trust ratings” and evaluated them for accuracy and simplicity.
LLNL computer scientist Brenden Petersen and his team’s “Unified Deep Symbolic Regression” (uDSR) algorithm beat out 12 other teams on the real-world track — a task to build an interpretable predictive model for 14-day forecast counts of COVID-19 cases, hospitalizations and deaths in New York state.
“We have seen in recent years the ability of AI to accelerate and unlock new paths for science,” said team member Jiachen Yang. “Our team’s achievement in this competition shows we are working at the leading edge of this rapidly growing field.”
Team member Mikel Landajuela recalled that six months before their Laboratory Directed Research and Development (LDRD) project ended, the team “had a grand idea on how to combine several modern deep-learning algorithms with classical search methods into a unified framework.
“We knew the combination would be extremely powerful, and we made a final sprint to get it done,” Landajuela explained. “After all the hard work, the results of the competition felt especially rewarding.”
The team’s uDSR method is an updated version of their earlier deep symbolic regression algorithm — a reinforcement learning approach using deep neural networks — that finds short mathematical expressions to best fit experimental data and uncovers underlying equations or dynamics of physical processes. The initial framework outperformed previous state-of-the-art baseline methods on benchmark problems. Researchers said the new version unifies deep symbolic regression with four other classes of state-of-the-art symbolic regression algorithms, hybridizing their key capabilities into a single, modular framework.
“We look forward to seeing more interpretable models of real-world data be uncovered by uDSR for other natural and social science problems,” explained team member Chak Lee.
SRBench, which seeks to create a living benchmark of modern symbolic regression algorithms and problems, held the competition to help distill algorithmic design choices and improve the practice of symbolic regression by evaluating submitted methods sourced mainly from the domains of physics, epidemiology and bioinformatics, according to their website. The uDSR algorithm also placed third on the competition’s synthetic track.
uDSR is part of a larger framework called Deep Symbolic Optimization (DSO), developed by the team as part of the LDRD. DSO is now being used in several other programs at LLNL: for example, to optimize antibody sequences to bind emerging pathogens.
“This competition is a big win for the Laboratory because our underlying DSO framework is being used for several Lab missions, not just symbolic regression,” said Petersen, who serves as the principal investigator on the project. “This victory establishes that we are supporting several Laboratory programs with bleeding-edge technologies of a highly competitive field.”
The LDRD Disruptive Research Program, a portfolio composed of projects considered to be high-risk and high-reward, funded the work. The DSO software framework is open-source and available on GitHub.
In addition to Petersen, Landajuela, Lee and Yang, the uDSR team includes LLNL researchers Ruben Glatt, Ignacio Aravena Solis, Claudio Santiago and Nathan Mundhenk.
Source: LLNL
LLNL Team Claims Top AI Award at International Competition & Latest News Update
LLNL Team Claims Top AI Award at International Competition & More Live News
All this news that I have made and shared for you people, you will like it very much and in it we keep bringing topics for you people like every time so that you keep getting news information like trending topics and you It is our goal to be able to get
all kinds of news without going through us so that we can reach you the latest and best news for free so that you can move ahead further by getting the information of that news together with you. Later on, we will continue
to give information about more today world news update types of latest news through posts on our website so that you always keep moving forward in that news and whatever kind of information will be there, it will definitely be conveyed to you people.
LLNL Team Claims Top AI Award at International Competition & More News Today
All this news that I have brought up to you or will be the most different and best news that you people are not going to get anywhere, along with the information Trending News, Breaking News, Health News, Science News, Sports News, Entertainment News, Technology News, Business News, World News of this made available to all of you so that you are always connected with the news, stay ahead in the matter and keep getting today news all types of news for free till today so that you can get the news by getting it. Always take two steps forward
Credit Goes To News Website – This Original Content Owner News Website . This Is Not My Content So If You Want To Read Original Content You Can Follow Below Links